
NA$A-CR-205214

Adaptive Flow Solver Project

AN ADAPTIVE FLOW SOLVER FOR AIR-BORNE VEHICLES

UNDERGOING TIME-DEPENDENT MOTIONS/DEFORMATIONS

Annual Technical Progress Report

Period: August 1, 1996 - July 31, 1997

///S Z/d tf2 1

0<;71/-

0"_/ ".:":-_,"---7

Prepared For

National Aeronautics and Space Administration (NASA)

Langley Research Center

Hampton, Virginia

NASA Grant No.: NAG-l-1760

NASA Technical Monitor: Roger Hathaway

By

Jatinder Singh, Ph.D. (P. I.)

Department of Engineering

Clark Atlanta University

Atlanta, Georgia

And

Stephen Taylor, Ph.D.

Department of Electrical Engineering and Computer Science

Syracuse University

Syracuse, New York

IMPLEMENTATION OF 3-D UNSTRUCTURED EULER FLOW
SOLVER USING FINITE VOLUME METHODOLOGY ON

HETEROGENEOUS NETWORKS

Jatinder Singh,

Department of Engineering

Clark Atlanta University

Atlanta, GA- 30314

Stephen Taylor

Department of Electrical Engineering and Computer Science

Syracuse University

Syracuse, NY

Summary

This report describes a concurrent Euler flow solver for flows around complex 3-D bodies.

The solver is based on a cell-centered finite volume methodology on 3-D unstructured

tetrahedral grids. In this algorithm, spatial discretization for the inviscid convective term is

accomplished using an upwind scheme. A localized reconstruction is done for flow variables

which is second order accurate. Evolution in time is accomplished using an explicit three-

stage Runge-Kutta method which has second order temporal accuracy. This is adapted for

concurrent execution using another proven methodology based on concurrent graph

abstraction. This solver operates on heterogeneous network architectures. These

architectures may include a broad variety of UNIX workstations and PC's running Windows

NT, symmetric multiprocessors and distributed-memory multi-computers. The unstructured

grid is generated using commercial grid generation tools. The grid is automatically partitioned

using a concurrent algorithm based on heat diffusion. This results in memory requirements

that are inversely proportional to the number of processors. The solver uses automatic

granularity control and resource management techniques both to balance load and

communication requirements, and deal with differing memory constraints. These ideas are

again based on heat dittusion. Results are subsequently combined for visualization and analysis

using commercial CI_ toota. Flow simulation results are demonstrated for a constant section

wing at subsonic, transonic, and a supersonic case. These results are compared with

experimental data and numerical results of other researchers. Performance results are under

way for a variety of network topologies.

1. Introducdon

Overall thrust of this research effort is to investigate issues related to resource management,

namely, implementation on heterogeneous architectures, scalability, load balancing, and

numerical accuracy while solving large scale flow problems in the compressible flow domain.

To achieve this end, a baseline flow solver algorithm is selected which is robust and provides

accurate solutions to the flow woblems involving stationary grids. Present attempt deals with

implementing and validating this baseline flow solver. Next phase will involve incorporation

of flow and boundary adaptive grids for flows around moving/deforming bodies.

Adaptive Flow Solver Project

Table of Contents

OBJECTIVES: ... 2

METHODOLOGY: ... 2

PROGRESS: ... 2

FUTURE WORK: .. 4

REFERENCES: .. 4

APPENDIX A ... 6

Adaptive Flow Solver Project

OBJECTIVES:

The objectives of the research effort funded by NASA are to develop a flow solver for large-scale,

three-dimensional simulations of flow around air-borne vehicles undergoing time-dependent

motions/deformations, and to investigate computational science issues such as optimization

techniques to improve memory and processor utilization of parallel machines. The intent is to

identify a current flow solver algorithm that works and use this to write a flow solver that solves

large scale industrial problems on parallel machines such as the Cray T3D and lntel Paragon,

shared-memory multi-processors, and networked workstations. The outcome will be an efficient

and versatile solver that is capable of solving flows around complex configurations undergoing

time-dependent motions/deformations and will be capable of directly impacting NASA missions.

METHODOLOGY:

The work is being carried out by a small multidisciplinary team consisting of (Jatinder Singh - P.

I.) an aerospace engineer at Clark Atlanta University (CAlf) with expertise in unsteady flows

around nonrigid bodies and CFD and a computer scientist (Stephen Taylor - Subcontractor) now

at Syracuse University (SU) with extensive background in issues related to scalable parallel

computations and large scale computations of unsteady flows around practical configurations.

This effort also supports a group of graduate and undergraduate students at CALl and SU. At

CAU, an Euler flow solver has been developed. The Euler Equations were diseretized spatially

using a finite volume scheme, wherein the physical domain was subdivided into tetrahedral

elemental volumes and the integral equations are applied to each volume. The algorithm is same

as that of references [1,2]. The goal is to have a second order accurate flow solver. At SU,

emphasis is on enhancing the existing concurrent prelPrammlag framework. Extensive amount

of work in the area of large-scale concurrent simulations [3] utili_a 8 novel dynamic load

balancing algorithms has taken place at SU. These efforts have resulted in Scalable Concurrent

Programming La_orary (SCPh'b) that is portable to heterogeneous architectures, including high-

performance multi-computers, shared-memory multiprocessors, PCs running Windows NT and

UNIX workstations. This library provides a framework for automatic load balancing, granularity

control, interactive flow visualization and is being used in the current work.

PROGRESS:

At CAU: At the initiation of the project, SCPh'b components were ported to the 8(3I workstation

at CAU. SCPlib consists of a set of libraries that include the grid h'brary, the structures h'brary,

and the part dealing with the concurrent graph abstraction. Initial focus was on developing

understanding of these h'brary components for parallel implementation and its use by writing

2

Adaptive Flow Solver Project

simple programs. At the same time, details about the flow solver algorithm and its

implementation were being finalized. Coding of the flow solver were initiated in November '95.

Simultaneously, SCPIib components were being enhanced at SU (see next paragraph). With the

release of newer SCPIib in March '96, the modifications were incorporated in the Euler flow

solver being developed. The coding of the Euler flow solver was completed and to help debug

the flow solver, initial runs of the flow solver were made using a simple problem in which flow

was entering a cube and leaving its boundaries. The grid for this problem had about 20,000

tetrahedral elements and was hand crafted. All the six outer faces would allow flow to come in

and leave. Earlier this year, detailed validation of the code for flows of practical importance

started by a constant section NACA0012 wing of finite span to compare results around a 2-D

NACA0012 airfoil for subsonic, transonic and supersonic flow conditions. Computational grids

around such a configuration were first generated using a commercially available grid generator

package ICEM-CFD. However, once its license expired, move was made to switch to GridTool

developed at GEOLAB in NASA Langley and VGRID grid generation package developed by

ViGYAN, Inc. for NASA Langley. The P.I. took training at NASA Langley in February 1997 for

generating grid using these tools and then used these to generate grids around constant section

NACA 0012 wing. Next step was to make the output from VGRID compatible with I/O routines

of SCPlib. Details about the implementation of the Euler flow solver are documented in a report

which is included as Appendix A.

At SU: Since the beginning of the project, the team at SU has completed integration of optimized

load balancing strategies into the SCPlib and has quantified the performance improvements

obtained using two large scale three-dimensional applications. One of these is related to a plasma

simulation and the other a three-dimensional satellite simulation. This newer version of SCPlib

incorporates major changes in the graph library component and simplifies the code development

prom. Another success has been towards resource management by enhancing SCPLib to

accommodate PC's running Windows NT. Work is continuing to further develop the SCTh'b and

support development effort at CAU.

Student Training: Since January '96, graduate students doing M.S. in Computer Sciences have

been identified and accepted to work on the project. Simultaneously, undergraduate students

have also worked with the research team at CAU. Initially, these students were exposed to

parallel programming framework and SCPlib by means of reading assignments followed by one on

one sessions for answering any questions. One of the undergraduate student was very good

resource to the group, having been exposed to the SCPIib concepts before joining this group

while he did summer internship at Caltech. At SU, Jerrell Watts, the graduate student has been a

3

Adaptive Flow Solver Project

good resource person for answering many questions regarding SCPIib to both the P.I. and the

students at CAU.

Publications: As an outcome of this research, a journal paper [4] by Jerrell Watts and Stephen

Taylor was been submitted to the IEEE Transactions on Parallel and Distributed Systems. A

copy of the paper was enclosed with the last yearly report. Recently, an abstarct has been

submitted to the AIAA Fluid Dynamic Conference to be held in June 1998. A copy of the

abstract is enclosed as Appendix B.

FUTURE WORK:

Having validated the Euler flow solver, following enhancements to the solver and numerical

experiments are planned. Work is currently under way to have a multi-partition version running

on a single processor. This will ensure proper communication across partitions on a single

processor. Next step will be to have the muti-processor version running on heterogeneous

architectures. During this phase of validation, same NACA 0012 wing will be used along with an

ONERA M6 wing, grid files for which have been obtained from Dr. Neai T. Frink of NASA

Langley Research Center and will be used to study flow around this wing for M=0.84 and

ot=3.06 °. These runs will establish accuracy of the flow solver and at the same time validate the

inter processor and inter partition communications. This will enable us to solve large scale

industrial problems. Next, viscous effects will be included to have a Navier-Stokes solver and

finally, flow adaptive capability will be added. In conformity with the tasks outlined in the

proposal, the final goal is to have a Navier-Stokes Flow Solver developed and validated for flow

around three-dimensional bodies undergoing time-dependent motions/deformations. Practical

configurations of interest will be identified in consultation with Dr. Frink from NASA Langley and

flow analyzed. As such this project is significant and will have an impact on aerodynamic analysis

of future air-borne vehicles that may deform during flight. Also the flow solver will have a

potential to facilitate development of newer configurations that use unsteady aerodynamic forces

advantageously in augmenting the performance while alleviating the undesirable effects associated

with separated flows of unsteady origin.

REFERENCES:

,

*

Frink, N. T., "Upwind Scheme for Solving the Euler Equations on Unstructured Tetrahedral

Meshes,"A/AA Journal, Vol. 30, No. 1, pp 70-77, January 1992.

Frink, N. T., "Recent Progress Towards a Three-Dimensional Unstructured Navier-Stokes

Solver," A/AA Paper 94-0061, 1994.

4

Adaptive Flow Solver Project

.

,

Taylor, S., J. Watts, M. Rieffel, and M. Palmer, "The Concurrent Graph: Basic Technology

for Irregular Problems," IEEE Parallel and Distributed Technology, Vol. 4, No. 2, pp 15-

25, Summer 1996.

Watts, J., M. Rieffel, and S. Taylor, "Practical Dynamic Load Balancing for Irregular

Problems", Submitted to IEEE Transactions on Parallel and Distributed Systems, 1995.

5

Adaptive Flow Solver Project

APPENDIX A

6

The baseline flow solver uses the cell-centered finite volume methodology on unstructured

tetrahedral meshes as described in reference [1]. The algorithm is robust and has been used

successfully to solve many flow problems on stationary grids [1-3] as well as dynamically

changing grids. Reference [4] gives results for internal viscous flows through turbomachines

and Reference [5] extends analysis to 2-D dynamically changing grids. Thus, this algorithm

has proven to be quite versatile. For the present, we focus on the inviscid flow problems

governed by the Euler equations. Mathematical formulation is described in the next section

(for details, see [1, 2]) and that is followed by description of the implementation on the

heterogeneous network architectures using a proven Scalable Concurrent Programming

Library (SCPlib) [6-7]. Flow simulation results are demonstrated for a constant section wing

at subsonic, transonic, and a supersonic case. These results are compared with numerical

results of other researchers [8,9].

2. Flow Physics - Numerical Formulation

2.1 Governing Equations

Equations governing flow of compressible inviscid nonconducting adiabatic fluid in the

absence of external forces are the Euler equations which describe conservation of mass,

momentum, and energy.
Off_ these become

where

Presented in integral form for a bounded domain fl with boundary

 tfoOdV P(O)'fids-O (1)

Ore, [_V .

i:w

(2)

and

(I o

pu n,

F-F(0)'fi-V'fi pv +pn,, (3)

pw n,]eo+ p 0

Here fi is the unit normal vector pointed exterior to the surface diff. n z , ny and n, are the

Cartesian components of ft. The Cartesian components of velocity "V are u, v, and w in the

x, y, and z direction respectively, e o is the energy per unit volume. Equation (1) has been

non-dimensionalized using p" and a_, as p - p'/p_, u - u'/a_, v - v'/a', w - w'/a'_,

• /[/:)]e o eo/[a,,] , and p-p" z- p'_ a . Here superscript * denotes dimensional quantities and

subscript oo represents free stream condition. With the ideal gas assumption, pressure and

total enthalpy can be expressed by

p . , [eo 2v2+w2/]+
1 2

"_ P+ (U +V2+W 2)
ho = ('f-1) p "2

here 7 is the ratio of specific heats and is 1.4 for air.

(4)

2.2 Spatial Discretization

A finite-volume discretization is used in the spatial domain. Equation (1) is applied to each

cell. The state variables 0 are volume-averaged values which are in balance with the area-

averaged fluxes across the cell faces. The solution algorithm consists of essentially four steps.

These are

Higher-Order Reconstruction: Given cell averaged solution in each cell at time t,

extrapolate state variable (_ to second order accuracy at each face;

Boundary Conditions: Apply appropriate boundary conditions to the faces that lie on a

boundary;

Flux Evaluation: Using reconstructed value of the state variable, evaluate the fluxes through

the faces using an upwind scheme; and

Time Evolution: Collect flux contributions in each control volume and evolve in time using a

time-stepping scheme such as an explicit Runge-Kutta scheme. Result of this process is once

again cell averages at time t,. 1. These steps are described below.

2.2.1 Higher-Order Reconstruction

If the cell-centered state variable Q is used in the evaluation of fluxes, the scheme is only first

order accurate. For a higher order scheme, estimation of the state at each cell face is achieved

by interpolating the solution at each time step with a Taylor series expansion in the

neighborhood of each cell center. The cell-averaged solution gradient required at the cell

center is evaluated using a geometrical invariant feature of the tetrahedra [2]. The resulting

formula for the flow state in terms of primitive variable Cl- {P u v w p}r is given by

1 1_q,,.,.,- rl, +q,, +]

[see Figure 1]

(5)

Here the subscripts n_, n2 and n 3 denote the vertices comprising face f_,2,3 of cell with

centroid at c and n 4 is the opposite vertex to face fl,2,3" Formula given by Equation (5) is the

analytical solution to a Taylor series expansion of Cl from the centroid of a tetrahedral cell to

the centroids of its triangular faces. The state at the vertices is evaluated using a pseudo-

Laplacian weighted averaging proceedure [1];

q., - co,,iqc,i coo,, (6)

Here N = total number of cells sharing vertex n,

oc,_= weight factorcalculatedat centroidc of cell i sharingvertexn, and
Clc,_= value of the ceU-averaged primitive variable given at centroid c of cell i sharing vertex n.

Weights m_,, are evaluated as

1+ xo)+ yo)÷ (7)
where _.x,_.y, and _'z are Lagrange multipliers which are obtained as a solution to a

constrained optimization problem as described in Reference [1]. Expressions for Z.x, _.y, and

_z as given in Reference [1] are reproduced in Appendix A for sake of completeness.

2.2.2 Boundary Conditions

Face centered boundary conditions can be defined by either a low-order approach in which

cell-averaged values are assigned to the face, or a higher-order approach that utilizes Taylor

series expansion (Equation 5) to construct a more accurate estimate of the state on the

boundary. Implementation of the higher-order approach requires the application of pseudo-

Laplacian averaging at the boundary vertices. This requires construction of ghost cells which

are image cells across the exterior boundary of an adjacent interior cell. The geometric

infromation for centroid of the ghost cell is provided by [1]

x_ - 2Xn I

_Yc.i Ynb) - 2Xny

z_ -(zc.i-z,_) - 2Xnl

(8)

where

X" (Xe,i- Xnb)nx + (Yc,i- Yab)ny +(Zc.i -- Znb)nz (9)

is the contravariant vector component of distance and subscript Sn._{b}$ denotes a boundary

vertex. These coordinates are used to generate weighting factors for the psuedo-Laplacian

averaging. One also needs associated flow velocities in ghost cells and for Euler equations,

Ulc m Uc, i

Vg c m Vc, i

Wg c m Wc, i

- 2Un,

- 2Un_

- 2Un,

(10)

U - ue, in x + vc,iny + we, in z (11)

these are constructed as

where

Using these values and by assigning same pressure and density values at the ghost cells as that

of adjacent cells from across the boundary, one can reconstruct second order accurate values

at boundary surfaces. These are used to prescribe appropriate boundary values on

(a) solid boundary and plane of symmetry; and

Co) farfield inflow and outflow boundaries.

Case (a). Solid boundary and plane of symmetry: Flow tangency is implemented by

subtracting the component normal to the solid face from the higher-order extrapolated values.

Let _lfb be the extrapolated values of the primitive variables to the boundary faces defined as

Clfb={Prb Ur_ Vf_ Wf_ Pr_}T (12)

and let

Utb = Ufbnx + vfbny + win z (13)

then boundary values satisfying flow tangency conditions are computed as

Then the state vector 0

Pb

Pb

is calculated

Ub = Utb -- Ufbn x

Vb .. Vg -- Ufbny

Wb -, Wfb -- Ufbn z

= Pr_

" Prb

where

in terms of the conserved variables as

0b " {Pb PbUb pbVb PbWb eo b}T

Pb 2 12%,- + u +v +wb,
and flux at the boundary face is specified as

Fb=pb{O nx ny n z 0}_

(14)

(15)

(16)

(17)

Case (b). Farfield boundary: For subsonic flows, characteristic boundary conditions are

applied using the fixed and extrapolated Riemann invarients R _ . Since the normal to the

boundary is defined as being pointed outwards, the incoming invarient R- is determined from

the freestream flow and the outgoing invarient R ÷ is extrapolated from the interior domain as
I

- - ; a® -

), -1 (18) .

y-I ' at "

Using these, locally normal velocity components and speed of sound are calculated as

(19)

here subscript 'ob' implies value at outer boundary. Two cases are possible. If Uob > O, it is

an outflOW boundary and primitive variables at the outflow boundary are calculated by

extrapolating two tangential velocities from the interior with the result

aob / _
Pob " \ YSob/

nob -- U i + nx(Uob-Ui)

Vob -- vi+ny(Uob-V,)

Web -- W i+nz(Uob-Ui)

PobaoZb
Pob "

Y

where subscript i denotes interior cell values and
2

at
m

So, v(p,),_,

If Uob < O, it is an inflow boundary and one has

a°' / _

Pob " k YSob/

nob -- n.+n,(Uob-V..)

Vob - v®+ny(Uob-U..)

Web - w® +n,(U_,-U..)

Poba_,
Pob as

where

(20)

(21)

(22)

2

Sob . a.. (23)

For both of thesecases,energy iscalculatesas

eob- P----L-b + Pb [U2 +W_) (24)
"f -1 T _ ' + v_

For supersonic flows, at supersonic inlet, all variables are set equal to the free stream values.

At the outlet, flow variables are set equal to the interior values.

2.2..3 Flux Evaluation

To evaluate fluxes across the faces of the tetrahedral control volumes, there are two

alternatives. One being the central differencing to which explicit artificial dissipation terms are

added. The other one that is more popular is the upwind differencing. Upwind schemes

evaluate the interface fluxes based on the characteristic theory for hyperbolic systems of

equations. In these upwind schemes, information from a direction opposite to that in which

the components of information are traveling is ut_ Currently, the popular upwind

schemes are the flux-difference splitting (FDS) due to Roe [10], and flux-vector splitting

(FVS) due tO Van Leer [11]. Both schemes have been used successfully in literature. Both of

these are reproduced below and will be tried and the one with least amount of computational

overhead for similar quality of computational results will be used in simulating flow around

deforming bodies.

2.2.3.1 Flux Vector Splitting

Flux vectors of Equation (3) are upwind differenced using the flux-vector splitting technique

of van Leer [11]. Let U = V.fi = un x +Vny +wn z be the velocity in the direction of the

outward pointing unit normal to a cell face. Also, let M n = U / a be the Mach number in the

direction of U, and 'a' is speed of sound. Then, the flux vector splitting is done in terms of

M, as follows:

Case 1: M_ > 1 - Supersonic flow in the direction of a face normal,

r -(_)" - _ , _--(_._)-- 0 _)
Here F as given by Equation (3) is evaluated using given value of U.

Case 2:0 < M. < 1 - Subsonic flow in the direction of a face normal,

f_

f:(u + n.(-U + 2a)/'t t

F ÷ = f:lV+ny(-U+2a)/y_ (26/

f;{w+ n,(-U +2a)/y_

f;
and

F- - F-F *

and F is given by Equation (3).

Case 3:-1 < M, < 0 - Subsonic flow in the direction opposite to the face normal,

f_

fm{U + H.(-U- 2a)/y

F-= f,:iv + ny(-U- 2a) / _'

L.-lw+ nz(-U- 2a)/_ t '

fl
and

F ÷ = F-F-

Here also, F is given by Equation (3). In cases 2 and 3 above, f__ and f_ are given by

and

f:- _?(_. _1)_

i(1-¥)U ±2('t-1)Ua+2a 2 u2+v 2+w _

('_ -1) +2 2

Case 4: Mo _: -1 - Supersonic flow in the direction opposite to the face normal,

--(._)--_ ; r-(_._)'-0
Here also, F as given by Equation (3) is evaluated using given value of U.

(27)

(28)

(29)

(30)

(31)

(32)

Equations(25) through (29) and (32) define the split fluxes at the centroid of a cell based on

reconstructed values of the state variable Q. Flux through a face between two cells is

evaluated as follows:

Let nodes 1, 2, and 3 define a face between two cells with centroids at 'a' and 'b'. Let the

flow direction be from 'a' to 'b' and F,+ and F,- be the split fluxes along normal to face 1,2,3

for cell with centroid at 'a', and Fb+ and Fb-be the split fluxes along the same normal from cell

'a' to face 1,2,3 for cell 'b'. Then flux through face 1,2,3 for cell 'a' is given by [see Figure 2]

Ff_.2,3,. F,+ + Fb- (33)

2.2.3.2 Flux Difference Splitting

The FDS technique due to Roe [10] reconstructs the fluxes by determining an approximate

solution to a Riemann problem. The fluxes across each cell face k(i) of tetrahedral cell i is

computed using numerical flux formula

QLand QRare the conserved variables to the left and right of the interface k(i).Here

Averaged Jacobian mat/ix I_ is calculated based on following averaged quantities

÷WR
"

Using these averaged quantities, flux Fi,t0) is obtained as

1

F,,.<i>- 7[F(Q<)+F(O.)-la_,l-I_.1-I"i_41<<,> (36)

1

il

+_

where

2

0 1tAu - n_AU

Av - nyAU

Aw - n,AU

ffAu + VAv + _Aw - OAU

and

I_,1-101_o-_) (37)

1

ff±nxff

AF4,sl - 0 ± gl("__"f -)V ± ny_"

_±nza"

ho soft

where 0 = fin, + _ny + _nz, AU = n Au + nyAv + nzAw and the operator A in the right

hand side of Equations (37) and (38) is defined as A()" ()R -()L"

2.2.4 Time Evolution

(38)

After discretizing Equation (1) in space, the following system of coupled ordinary differential

equations (ODE) is obtained:

V i + R i = 0 , i - 1,2,3-.. (39)

where

R i- Fi,jASi,j (40)

is summation of the fluxes through the four faces k of the tetrahedral cell i. F_.i is the flux value

through face j of cell i provided by Equations (33) or (34), ASij is the area of face j of cell i,

and V, is the volume of cell i.

As stated before, main objective of this research effort is to develop a flow solver that gives

time-accurate solutions to unsteady flow problems. In order to solve the system of ODE's

defined by Equation (38), one could use either explicit or implicit schemes. The choice

depends on the time scales of the physical unsteady phenomena under investigation and to

compare it with the time step restriction arising fzom the numerical scheme, e.g., CFL

condition number for explicit scheme.

Let Atp be the time-step limited by physics, Ato be the time-step limited by numerics (e.g.,

CFL condition number for explicit scheme), and t, be the ratio of these time steps

(- Atp/At,).

If t r >> 1, then large number of Ato would be required to cover a physical time step Atp. In

this case, implicit methods should be used. However, if tr ,: 1, then explicit schemes are a

way to go since Atp is smaller than At° and there is no advantage in using implicit scheme

which entail relatively large storage requirements as compared to low storage explicit schemes

such as m-stage Runge-Kutta method [3].

As a first step, an explicit scheme namely multi-stage Runge-Kutta method will be used.

Using a m-stage scheme provides m thorder accuracy for linear systems. Both 3-stage and 4-

stage schemes are only 2_ order accurate for the given system of nonlinear equations [9]. 3-

stage scheme has been used in References [1-3]. A 4-stage scheme allows for a CFL

condition number close to 3. This will allow larger time step as compared to a 3-stage scheme

at the cost of one additional set of updates per time step. The m-stage Runge-Kutta time-

stepping scheme can be written as

Q!O)
1

Q(1) 0 (°) - a, At Rl°)
i m _ i Vi

where for a 3-stage scheme,

Q!m) .
I

Qn÷l

At R(m_2)0(°) --Ctm-t _ i

Q!O) _CXm At R}m-l)
' V,

Q(m)
i

1 1
I m I

or1 3 ,:xz _ ct 3-1

As a first trial, 3-stage scheme will be used.

(41)

If the goal of the computational experiment is to reach steady state solution to a problem, it is

possible to use some acceleration techniques such as local time-stepping and/or implicit

residual smoothing at each time to accelerate convergence to steady state. The results

obtained after each time-step when using such accelerating schemes are not time-accurate

from unsteady flow point of view. Thus, if the goal is to have time-accurate solutions for

unsteady flow problems, these acceleration techniques should not be used. However, initially

for validation of the flow solver, we will use local time stepping and implicit residual

smoothing. These are described below.

2.2.4.1 Local Time Stepping

Local time stepping accelerates convergence by advancing the solution at each cell in time at a

CFL number near the local stability limit. The expression for the local time step was derived

with the aid of a 2-D stability analysis.

v,
At _; v (42)

A, + B i + Ci

with

B,- (Iv,l+a,)Sl" (43)

c, z'
where v is the CFL number, V_ is the cell volume, a i is the local speed of sound, and .q{')

S_ y), and S_z) are projected areas of cell i in the x, y, and z directions.

10

2.2.4.2 Implicit Residual Smoothing

The maximum time step can be further increased by increasing the support of the scheme

through implicit averaging of the residual with their neighbors. The residuals are filtered

through a smoothing operator (which is essentially the Laplacian operator for a uniform grid):

H i = R_ + EV2R_ (44)

where

V2Ri = j._i!RJ-Ri) (45)

The summation uses difference in the residual from neighboring cells that share the four faces

of the tetrahedra. The resulting equations are solved using Jacobi iterations and for the

present case of tetrahedral grids and with recommended value of e-0.5, the equation
becomes

Ri (m) = R, + 0.5 (46)
J-t /

Two Jacobi iterations have been found satisfactory and the residual smoothing is repeated

during every stage of the Runge-Kutta time cycle.

3. Concurrent Implementation of the Flow Solver

The concurrent algorithm is based on a domain decomposition that divides the grid into

partitions. Each partition is solved independently using appropriate boundary conditions such

as presence of a body, inflow/outflow and so on. Boundaries at the partition cut represents a

nonphysical boundary and information from adjacent boundaries is communicated between

partitions to solve flow in those areas. This algorithm is implemented using the Scalable

Concurrent Processing Library (SCPh'b) [6]. This library supports irregular applications on

scalable concurrent hardware over heterogeneous networks. With this fibrary, an application

is implemented as a graph comprising nodes and directed edges. The nodes correspond to

partitions of the problem, and edges correspond to communication channels (Figure 3).

Multiple nodes are mapped to s_single processor, or to a collection of processors sharing

memory.

Each node has four components (Figure 4). A node's state is the set of variables or data

structures that represent a problem partition. In the present problem, state is descn'bed by

flow variables and flux through boundaries and associated data structures. A collection of

application specific phys/cs routines are implemented in each partition. These correspond to

implementation of the numerical formulation for the Euler equations. The communication list

describes the mapping of nodes to processors and is used to send messages between nodes.

These are built during the partitioning phase and represent data dependencies in the numerical

scheme. These dependencies describe values to be extracted from the state sent between

nodes at each iteration. Finally, there are other functions which are application and

architecture independent but that function under the assumption that the computations

conforms to the graph's architecture. The library provides these functions and they

accomplish important tasks such as load balancing, granularity control and visualization. This

library has been used to implement the Euler flow solver.

11

Figurebelowshowstheabstractalgorithm for the Euler flow solver, in terms of the Scalable

Concurrent Processing Library (SCPIib).

_artition(............)

{ load geometry data into partition
initialize state

calculate local At and norm

gather/scatter to obtain global norm

while(termination criteria not met) {

extract state at partition boundaries

send state at partition boundaries to neighbors

receive state from neighboring boundaries

compute state at newer iteration

calculate new local At and norm

gather/scatter to obtain new global norm

)

Concurrent Euler flow solver algorithm

Node's physics routines are encapsulated behind the interfaces provided by the initialize,

extract and compute functions. The last function receives the data during communications

and subsequently solves the Euler equations for a single partition at a given time-

step/iteration. This function is essentially the sequential version of the Euler flow solver with

the boundary condition that represents a cut in the domain.

4. Flow Results

In order to validate the flow solver, several test cases were run on a single processor of a

computer/workstation. A simple geometry was selected consisting of a constant section

NACA 0012 wing with a unit chord and 0.1 semi-span. The motivation was to solve 3-D

flow and compare results with standard 2-D eases at subsonic(sub-critical), transonic, and

supersonic flow regimes. Grid was generated using GridTool/VGRID grid generation

software developed at NASA Langley Research Center. Grid consisted of 5996 vertices,

9588 faces and 20815 tetrahedral elements. It should be noted that the grid used in this study

is coarse as compared to the two-dimensional grid used in reference [8]. The computational

domain is bounded by a rectangular box with boundaries at -8 ,_ x _ 12, 0 n; y ,_ 0.1 and

-8 n; z ,: 8. Figures 5 and 6 show respectively, the near-field and the far-field grid at the

symmetry plane.

Computations were carried out for the test cases of a) subsonic (suberitical) M=0.63, Qt - 2 ° ,

b) transonic M---0.85, ¢t -1 ° , and c) supersonic M=l.2, _t -0 ° . Results are presented for

each of these case by taking a cut plane at the mid wing location (y--0.05). Results obtained

from the cut plane are compared with the 2-D computations of reference [8]. Computations

were carried out on SGI Octane and it took about 10 hours of cpu time to carry out 5000

iterations for each case. For the subsonic (subcritical) case, Iso-Mach lines are presented in

12

Figure 7 with (AM = 0.028) and compared with the computations from [8] and show good

comparison. Figures 8 and 9 shows respectively Cp distribution and Mach number on the

surface of the airfoil and Figure 10 shows Mach number distribution in the cut plane. This

grid resolves the subsonic (subcritical) case fairly well.

For the transonic case, Figure 11 shows the Iso-mach contours (AM - 0.05). Both the upper

and the lower surface shocks are present but are diffused because of relatively coarse grid

which is unable to resolve the shock discontinuity sharply in the flowfield. Figure 12 shows

the Cp distribution. It is seen that both the shocks are captured. Figure 13 shows the Mach

number distribution along the wing surface at the cut plane. These values are calculated by

picking face centered values of surface data where cut plane intersects the surface triangles

and are assumed constant over the length of the line segment over the face belonging to the

cut plane. This lower order interpolation scheme causes kinks to appear in these curves.

Figure 14 shows the Mach number distribution at the cut plane.

For the supersonic case, Figure 15 shows the Iso-mach contours (AM - 0.05). Both the bow

and the trailing edge shocks are present but are diffused because of relatively coarse grid

which is unable to resolve the shock discontinuity sharply in the flowfield. Figure 16 shows

the Cp distribution. It compares well with the distribution of Reference [8]. Figure 17 shows

the Mach number distribution along the wing surface at the cut plane. As explained above,

some kinks show up in these curves because of the lower order interpolation scheme. Figure

18 shows the Mach number distribution at the cut plane.

5. Acknowledgments

The first author would like to express his indebtedness to Dr. Neal T. Frink of NASA Langley

Research Center for providing technical support and Dr. Shahyar Pirzadeh of ViGYAN, Inc.

and Mr. Javier A. Garriz for providing help with grid generation. This work was performed

under NASA Grant NAG-l-1760 and support and encouragement from Mr. Roger Hathaway,

the Technical Monitor is also acknowledged.

6. References

1. Frink, N. T., "Recent Progress Towards a Three-Dimensional Unstructured Navier-Stokes

Flow Solver," AIAA Paper 94-0061, 1994.

2. Frink, N. T., P. Parikh, and S. Pitzadeh, "A Fast Upwind Solver for the Euler Equations

on Three-Dimensional Unstructured Meshes," AIAA Paper 91-0102, 1991.

3. Frink, N. T., "Upwind Scheme for Solving the Euler Equations on Unstructured

Tetrahedral Meshes," AIAA Journal, Vol 30, No. 1, January 1992, pp 70-77.

4. Kwon, O. J., and C. Hah, "Simulation of Three-Dimensional Turbulent Flows on

Unstructured Meshes," AIAA Journal, Vol 33, No. 6, June 1995, pp 1081-1089.

5. Singh, K. P., J. C. Newman, and O. Baysal, "Dynamic Unstructured Method for Flows

past Multiple Objects in Relative Motion," AIAA Journal, Vol 33, No. 4, April 1995, pp
641-649.

13

. Taylor, Stephen, Jerrell R. Watts, Marc A. Rieffel, and Michael Palmer, "The Concurrent

Graph: Basic Technology for Irregular Problems," IEEE Parallel & Distributed

Technology, Systems & Applications, pp. 15-25, Summer 1996.

.

.

Watts, Jerrell, and Stephen Taylor, "A Practical Approach to Dynamic Load Balancing,"

Technical Report, Scalable Concurrent Programming Laboratory, Syracuse University.

Viviand, H., "Numerical Solutions of 2D Reference Test cases," AGARD Technical

Report AR-211, May 1985.

, Delanaye, Michel, "Polynomial Reconstruction Finite Volume Schemes for the

compressible Euler and Navier-Stokes Equations on Unstructured Adaptive Grids," Ph.D.

Thesis, September 1996,University of Liege.

10. Roe, P. L., "Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes,"

Journal of Computational Physics, Vol 43, 1981.

11. Van Leer, B., "Flux vector Splitting for the Euler Equations," Lecture Notes in Physics,
Vol 170, 1982, pp 501.

14

1 3
2

Figure 1:Notation for extrapolation based on higher order averaging in a tetrahedra.

2

Figure 2: Flux through a face shared by two tetrahedra.

Node

/ ::::::::::::::::::

Chanrtels ,_:::*::_'

i ::iii!!;iTiiiiiii_

Compurer

WV ,,I w \

_ Scatter
\ I

/

/

barrier I

Figure 3: Concurrent graph

Figure 4: Graph node

15

\

Figure 5: Near-field grid

Figure 6: Far-field grid

16

\
\

\

\

............ _
/

/, I _

,, -- • i_J

,, ,,_

/
/

/

!
/
/

/ I¸

/

//'

/

0.750

, -- /'

" • ,O,250

: O._DCX)

Figure 7: Iso-Mach contours for the subsonic case.

1,5 i i i ! i i i i i

upper
lower

1

0.5

o

-0.5

-1

-1"5 0 011 012 013 014 015 016 017 OA8 019

x

Figure 8: Cp distribution for the subsonic case.

17

Figure 9:

1 i

upper
lower

Mach number distribution on the surface for the subsonic case.

Figure 10: Mach number distribution in the cut plane for the subsonic case.

18

,'f f

,' / ,/ ,

,:tt

• i_,i'
; I

l .400

Figure 11: Iso-Mach contours on surface for the transonic case.

1.5

0.5

-0.5

-1

-1.5
0

i i

upper --
lower

Ol.1 012 013 014 015 016 017 018 019

X

Figure 12: Cp distribution on surface for the transonic case.

19

i i i

upper
lower

X

Figure 13: Mach number distribution on surface for the transonic case.

Figure 14: Mach number distribution in the cut plane for the transonic case.

20

i

f

_. _ --'" o_1"2°°

Cl.(_ll_ _

Figure 15: Iso-Mach contours on surface for the supersonic case.

v,

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1

-1.2

-1.4
0

! i ! i i i i i i

I I I I I I I I I

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

x

Figure 16: Cp distribution on surface for the supersonic case.

21

1.6

1.4

1.2

0.8

0.6

0.4

0.2

upper --
lower

0'._ 0'._ 0'._ 0'._ 0'.5 016 01_ 0'._ 019
X

Figure 17: Mach number distribution on surface for the supersonic case.

Figure 18: Mach number distribution in the cut plane for the supersonic case.

22

Appendix A

Expressions for Lagrange Multipliers _'x' _'y ' and Xz

Given coordinates of a node n, and coordinates of N centroids of all tetrahedra sharing node

n, Lagrange multipliers _'x' _.y, and _'z are calculated as follows. First some intermediate

values are defined as

x.)
N

R,-_/yc,-y.)
N

N

I_-_/xo-x.)2
N

I_-_/yo,-y.)2
N

lo-_i/z_i-z.)2
N

I.y " _. (xc., - x, XYc., - Y,)

N

and the Lagrange multipliers are calculated as

_,-[Rx(ix,io_i_i_)_R,/I_Io-i_)÷Rz(I_,_-XxyI_)]/D
z-[-Rx0x,I-I_I_)÷R,(I_I_-ix,io)-Rz(I_I_-I_,)]/D

23

Adaptive Flow Solver Project

APPENDIX B

An Unstructured Euler Solver for Heterogeneous Networks

Jatinder Singh l, John Maweu 2, Jerreli Watts 3, and Stephen Taylor 4

Summary

This paper describes a concurrent Euler flow solver for flows around complex 3-D bodies. The

solver is based on a proven, finite-volume methodology that has second-order accuracy and is

adapted for concurrent execution using another proven methodology based on concurrent graph

abstraction. This solver operates on heterogeneous network architectures. These architectures

may include a broad variety of UNIX workstations and PC's running Windows NT, symmetric

multiprocessors and distributed-memory multi-computers. The grid is generated using

commercial grid generation tools. The grid is automatically partitioned using a concurrent

algorithm based on heat diffusion. This results in memory requirements that are inversely

proportional to the number of processors. The solver uses automatic granularity control and

resource management techniques both to balance load and communication requirements, and deal

with differing memory constraints. These ideas are again based on heat diffusion. Results are

subsequently combined for visualization and analysis using commercial CFD tools. Flow

simulation results are demonstrated for a constant section wing at subsonic, transonic, and a

supersonic case. These results are compared with experimental data and numerical results of

other researchers. Performance results are under way for a variety of network topologies.

1. Introduction

Overall thrust of this research effort is to investigate issues related to resource management,

namely, scalability, load balancing, and numerical accuracy while solving large scale flow

problems in the compressible flow domain. To achieve this end, a baseline flow solver algorithm

is selected which is robust and provides accurate solutions to the flow problems involving

stationary grids. Present attempt deals with implementing and validating this baseline flow solver.

The baseline flow solver uses the cell-centered finite volume methodology on unstructured

tetrahedral meshes as described in reference [1]. The algorithm is robust and has been used

successfully to solve many flow problems on stationary grids [1-3] as well as dynamically

1Associate Professor, Clark Atlanta University
2 Student Assistant, Clark Atlanta University
3 Graduate Student Assistant, Syracuse University
4 Associate Professor, Syracuse University

changing grids. Reference [4] gives results for internal viscous flows through turbomachines and

Reference [5] extends analysis to 2-D dynamically changing grids. Thus, this algorithm has

proven to be quite versatile. For the present, we focus on the inviscid flow problems governed by

the Euler equations. Mathematical formulation is described briefly in the next section (for details,

see [1]) and that is followed by description of the implementation on the on heterogeneous

network architectures using a proven Scalable Concurrent Programming Library (SCPIib) [6,7].

Finally, results are presented and compared to work of others [8,9].

2. Flow Physics - Numerical Formulation

2.1 Governing Equations

Equations governing flow of compressible inviscid nonconducting adiabatic fluid in the absence of

external forces are the Euler equations which describe conservation of mass, momentum, and

energy. Presented in integral form for a bounded domain Q with boundary 0fl these become

"_fa QdV + _m F(Q) •fi ds - 0 (1)

where Q-{p pu pv pw eo} r and

F-P(0)._-V._{p pu pv pw eo+p}T+p{0 nx n, nx

Here fi is the unit normal vector pointed exterior to the surface OQ. n x , n r

0} r (2)

and n Z are the

Cartesian components of ft. The Cartesian components of velocity _' are u, v, and w in the x, y,

and z direction respectively, e o is the energy per unit volume. Equation (1) has been non-

dimentionalized using p" and a'as p-p'/p_, u-u'/a_,, v-v'/a:,,

• // • _ ./1" ./ • _21
eo/_, a®)2 , and p - p/[p®[a®) j.eo Here1

subscript oo represents free stream condition.

enthalpy can be expressed by

p l

ho lit

W m w*/a* ® '

superscript * denotes dimensional quantities and

With the ideal gas assumption, pressure and total

- p(u +v2+w2

'/ P+I(u2+v2+w2)
(_' -1)p

here 't is the ratio of specific heats and is 1.4 for air.

(3)

2.2 Spatial Discretization

A finite-volume discretization is used in the spatial domain. Equation (1) is applied to each cell.

The state variables (_ are volume-averaged values which are in balance with the area-averaged

fluxes across the cell faces. The solution algorithm consists of essentially four steps. These are

Higher-Order Reconstruction: Given cell averaged solution in each cell at time tn,

extrapolate state variable _] = {p u v w p}T tO second order accuracy at each face. This is

accomplished by first evaluating the state at the vertices using the pseudo-Laplacian weighted

averaging [1]. That is followed by doing a Taylor series expansion in the neighborhood of the cell

center and extrapolating values at the face of the tetrahedra using a geometrical invariant feature

of the tetrahedra [2]. This yields second order accuracy of the state variable which is used in

evaluating of the flux.

Boundary Conditions: Apply appropriate boundary conditions to the faces that lie on a

boundary. At the boundary faces, higher order reconstructed values are corrected to impose

appropriate boundary conditions. At the body and the symmetry plane, flow tangency is

implemented by subtracting the component normal to the face from the higher-order extrapolated

values. At the farfield boundaries, characteristic boundary conditions are applied using the fixed

and extrapolated Riemarm invariants. Since the normal to the boundary is defined as being

pointing outwards, the incoming invariant is determined from the free.stream flow and the outward

invariant is extrapolated from the interior domain.

Flux Evaluation: Using reconstructed value of the state variable, evaluate the fluxes through

the faces using an upwind scheme. This is accomplished using the popular flux-difference

splitting scheme due to Roe [10]. The flux across each face cell is computed from Roe-averaged

quantities details of which are given in [2].

Time Evolution: Collect flux contributions in each control volume and evolve in time. A time-

stepping scheme such as an explicit three-stage Runge-Kutta scheme is used. At each stage of the

scheme, local time-stepping and implicit residual smoothing [2] are used to accelerate

convergence to steady state. At the end, result of this process is once again cell averages at time

to+ 1 •

3. Concurrent Implementation of the Flow Solver

The concurrent algorithm is based on a domain decomposition that divides the grid into partitions.

Each partition is solved independently using appropriate boundary conditions such as presence of

a body, inflow/outflow and so on. Boundaries at the partition cut represents a nonphysical

boundary and information from adjacent boundaries is communicated between partitions to solve

flow in those areas. This algorithm is implemented using the Scalable Concurrent Processing

Library (SCPlib) [6]. This library supports irregular applications on scalable concurrent hardware

over heterogeneous networks. With this library, an application is implemented as a graph

comprising nodes and directed edges. The nodes correspond to partitions of the problem, and

edges correspond to communication channels (Figure 1). Multiple nodes are mapped to a single

processor, or to a collection of processors sharing memory.

Node Computer

I x

,' !i_iiiiii!iiii;iiiii_"_ ', L barrier J

'. _,'/-,I["'I- ',
/=(, ca.or

/

Figure 1 :Concurrent graph

Each node has four components (Figure 2). A node's state is the set of variables or data

structures that represent a problem partition. In the present problem, state is described by flow

variables and flux through boundaries and associated data structures. A collection of application

specific physics routines are implemented in each partition. These correspond to implementation

of the numerical formulation for the Euler equations. The communication list describes the

mapping of nodes to processors and is used to send messages between nodes. These are built

during the partitioning phase and represent data dependencies in the numerical scheme. These

dependencies describe values to be extracted from the state sent between nodes at each iteration.

Finally, there are other functions which are application and architecture independent but that

function under the assumption that the computations conforms to the graph's architecture. The

library provides these functions and they accomplish important tasks such as load balancing,

granularity control and visualization. This library has been used to implement the Euler flow

solver.

Figure 2: Graph node

Figure 3 below shows the abstract algorithm for the Euler flow solver, in terms of the Scalable

Concurrent Processing Library (SCPIib).

partition(............)

{ load geometry data into partition
initiafize state

calculate local At and norm

gather/scatter to obtain global norm

while(termination criteria not met) {

extract state at partition boundaries

send state at partition boundaries to neighbors

receive state from neighboring boundaries

compute state at newer iteration

calculate new local At and norm

gather/scatter to obtain new global norm

}

Figure 3: Concurrent Euler flow solver algorithm

Node's physics routines are encapsulated behind the interfaces provided by the initialize, extract

and compute functions. The last function receives the data during communications and

subsequently solves the Euler equations for a single partition at a given timestep/iteration. This

function is essentially the sequential version of the Euler flow solver with the boundary condition

that represents a cut in the domain.

4. Flow Results

4. Flow Results

In order to validate the flow solver, test cases were run on a single processor of a machine. A

simple geometry was selected consisting of a constant section NACA 0012 wing with a unit chord

and 0.1 semi-span. The motivation was to solve 3-D flow and compare results with standard 2-D

cases at subsonic(subcritical), transonic, and supersonic flow regimes. Grid was generated using

GridTool/VGRID grid generation software developed at NASA Langley Research center. Grid

consisted of 5996 vertices, 9588 faces and 20815 tetrahedral elements. The computational

domain is bounded by a rectangular box with boundaries at -8 < x < 12, 0 < y < 0.1 and

Figures 4 and 5 show respectively, the nearfield and the farfield grid at the symmetry-8<z<8.

plane.

Figure 4: Near-field grid

Figure 5: Far-field grid

Computationswere carriedout for thetestcasesof a) subsonic(subcritical) M=0.63, c_= 2° , b)

transonic M=0.85, c_ = 1° , and c) supersonic M=l.2, ot = 0 ° . Results are presented for the

transonic flow case. Figure 6 shows the Iso-Mach number contours (AM = 0.05) at middle of the

wing (y=0.05). Figure 7 shows Cp distribution at same location. Both of these compare well

with numerical work reported in reference [8]. It should be noted that the grid is relatively coarse

as compared to the 2-D computational attempts. Results for the subsonic and the supersonic

cases also provide similar accuracy. Performance of the solver over hetrogenous network

topologies is under way and will be reported in the paper.

,' / _ / _ _/ 1 " ,I" s ,t(rI,

, e l /' / I i / / klltJ_,

,' ,,e, /I / i . _/ '!i_1" 1,1 LIO

0.560

'I 0.280

' "_ \'\ "f _ '"r

' ', " ,' 0.000

I

Figure 6: Iso-Mach contours

-

0.5 "" --0n 3 0_4 0a5 0 i "/ 0=7 "'" i

<,,= o .i::...!...............................:

Figure 7: Cp distribution

5. References

1. Frink, N. T., "Recent Progress Towards a Three-Dimensional Unstructured Navier-Stokes

Flow Solver," AIAA Paper 94-0061, 1994.

2. Frink, N. T., P. Parikh, and S. Pirzadeh, "A Fast Upwind Solver for the Euler Equations on

Three-Dimensional Unstructured Meshes," AIAA Paper 91-0102, 1991.

3. Frink, N. T., "Upwind Scheme for Solving the Euler Equations on Unstructured Tetrahedral

Meshes," AIAA Journal, Vol 30, No. 1, January 1992, pp 70-77.

4. Kwon, O. J., and C. Hah, "Simulation of Three-Dimensional Turbulent Flows on

Unstructured Meshes," AIAA Journal, Vol 33, No. 6, June 1995, pp 1081-1089.

5. Singh, K. P., J. C. Newman, and O. Baysal, "Dynamic Unstructured Method for Flows past

Multiple Objects in Relative Motion," AIAA Journal, Vol 33, No. 4, April 1995, pp 641-649.

o Taylor, Stephen, Jerrell R. Watts, Marc A. Rieffel, and Michael Palmer, "The Concurrent

Graph: Basic Technology for Irregular Problems," IEEE Parallel & Distributed Technology,

Systems & Applications, pp. 15-25, Summer 1996.

7. Watts, Jerrell, and Stephen Taylor, "A Practical Approach to Dynamic Load Balancing,"

Technical Report, Scalable Concurrent Programming Laboratory, Syracuse University.

8. Viviand, H., "Numerical Solutions of 2D Reference Test cases," AGARD Technical Report

AR-211, May 1985.

. Delanaye, Michel, "Polynomial Reconstruction Finite Volume Schemes for the compressible

Euler and Navier-Stokes Equations on Unstructured Adaptive Grids," Ph.D. Thesis,

September 1996,University of Liege.

10. Roe, P. L., "Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes,"

Journal of Computational Physics, Vol 43, 1981.

